Trusted Machine Learning for Probabilistic Models
نویسندگان
چکیده
In several mission-critical domains (e.g., selfdriving cars, cybersecurity, robotics) where machine learning algorithms are being used heavily, it is becoming increasingly important to ensure that the learned models satisfy some domain properties (e.g., temporal constraints). Towards this goal, we propose Trusted Machine Learning (TML), wherein we combine the strengths of machine learning and model checking. If the desired logical properties are not satisfied by a trained model, we modify either the model (‘model repair’) or the data from which the model is learned (‘data repair’). We outline a concrete case study based on the Markov Chain model of a car controller for ‘lane changing’ — we demonstrate how we can ensure that such a model, learned from data, satisfies properties specified in Probabilistic Computation Tree Logic (PCTL).
منابع مشابه
Trusted Machine Learning: Model Repair and Data Repair for Probabilistic Models
When machine learning algorithms are used in life-critical or mission-critical applications (e.g., self driving cars, cyber security, surgical robotics), it is important to ensure that they provide some high-level correctness guarantees. We introduce a paradigm called Trusted Machine Learning (TML) with the goal of making learning techniques more trustworthy. We outline methods that show how sy...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016